2024年北京高校数学建模校际联赛竞赛赛题浅析

一图流:

题目复杂性技术需求数据处理主要难点
A题:格陵兰入海冰川3气象学、物理学、环境科学时间序列分析、空间数据处理多学科集成、预测模型的准确性和策略制定
B题:铁道线路动态检测数据分析1数据科学、机器学习、信号处理实时数据流处理、异常检测实时数据分析、故障诊断、设备性能随时间变化的调整
C题:订单商品包装问题2优化算法、启发式方法、决策支持系统组合优化、逻辑推理多约束优化问题、实际操作的可行性和成本效益的考量

A题:格陵兰入海冰川

这个问题涉及对气候变化下冰川动态的建模,主要目的是分析冰川末端位置的变化、表面物质平衡,以及预测冰储量的变化。为了解决这个问题,可以考虑以下步骤:

      数据分析:首先分析提供的多源数据集,包括冰川末端位置、表面径流、物质平衡、海水温盐度等。使用统计分析方法确定数据的趋势和季节性变化。

      归因分析:使用多元回归或机器学习方法来分析各种因素(如表面物质平衡、海水温度等)对冰川末端位置变化的贡献。

      建模预测:基于观测数据建立冰储量动态模型,预测未来冰川变化。可以考虑使用系统动力学模型或机器学习方法。

     策略提出:根据模型结果,提出减缓气候变化对冰川的影响的策略。

B题:铁道线路动态检测数据分析

     这个问题关注的是铁路线路状态的动态检测,以保障运行安全。关键是如何从动态检测数据中准确判断线路状态并进行预警。解决方案可能包括:

      可靠性分析:使用统计方法分析各动检仪的检测数据,识别出异常设备。

       实时数据处理:开发算法实时评估检测数据的可靠性和确定报警级别,使用模式识别或异常检测技术来区分正常与异常大值。

     线路质量评估:利用空间分析技术按公里评价线路质量,找出线路质量最好与最差的区间,这可能涉及到数据聚类或时间序列分析。

C题:订单商品包装问题

    这个问题专注于优化商品包装过程,减少包装和运输成本。关键挑战在于如何为不同大小和形状的商品选择最合适的包装箱并优化装箱方式。解决方法可能包括:

  装箱优化模型:建立数学模型,如整数规划或启发式算法(如遗传算法),来选择最佳包装箱并优化内部布局。

   模拟和优化:通过模拟不同的包装策略,计算空间利用率和成本,以找到最佳方案。

    案例分析:应用模型到实际订单数据,分析现有包装选择的效率,并提出改进建议。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/583334.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux详解:进程等待

文章目录 进程等待等待的必要性进程等待的方法waitwaitpid获取子进程status阻塞等待 与 非阻塞等待 进程等待 等待的必要性 子进程退出,父进程不进行回收的话,就可能造成僵尸进程,进而造成内存泄露 如果进程进入了僵尸状态,kill…

机器学习:驱动现代交通运输革命的AI智慧引擎

🧑 作者简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向…

玄子Share-引导过程与服务控制

玄子Share-引导过程与服务控制 Linux操作系统引导过程 系统初始化进程 init 进程 由 Linux 内核加载运行 /sbin/init 程序init 进程是系统中第一个进程init 进程的 PID(进程标记)号永远为 1 Systemd Systemd是Linux操作系统的一种init软件CentOS7中采用…

【Linux开发 第十二篇】搭建JavaEE环境

搭建开发环境 搭建javaEE环境 搭建javaEE环境 在Linux下开发JavaEE需要安装软件包: 安装jdk 安装步骤: 在opt目录下创建jdk目录通过xftp上床到jdk目录中进入到jdk目录中,解压jdk压缩包在/usr/local下创建java目录将解压完成的jdk文件移动…

SpringBoot框架学习笔记(一):依赖管理和自动配置

本文为个人笔记,仅供学习参考之用,如有不当之处请指出。 本文基于springboot2.5.3版本,开发环境需要是 jdk 8 或以上,maven 在 3.5 1 SpringBoot 基本介绍 1.1 官方文档 (1) 官网 : https://spring.io/pr…

张朝阳对话华为Fellow陈海波:万物智联时代,鸿蒙如何实现“换道超车”?

随着智能终端设备的普及和万物智联时代的加速到来,鸿蒙生态的高速发展正引发全行业的关注。 搜狐创始人、董事局主席兼CEO、物理学博士张朝阳与华为Fellow、基础软件首席科学家陈海波带来了一场关于鸿蒙生态的公开课。鸿蒙技术架构有哪些领先性?HarmonyOS发布5年来…

compose调用系统分享功能分享图片文件

compose调用系统分享功能图片文件 简介UI界面提供给外部程序的文件访问权限创建FileProvider设置共享文件夹 通用分享工具虚拟机验证结果参考 本系列用于新人安卓基础入门学习笔记,有任何不同的见解欢迎留言 运行环境 jdk17 andriod 34 compose material3 简介 本案…

Hadoop3:集群搭建及常用命令与shell脚本整理(入门篇,从零开始搭建)

一、集群环境说明 1、用VMware安装3台Centos7.9虚拟机 2、虚拟机配置:2C,2G内存,50G存储 3、集群架构 从表格中,可以看出,Hadoop集群,主要有2部分,一个是HDFS服务,一个是YARN服务 …

[系统安全] 六十.威胁狩猎 (1)APT攻击检测及防御与常见APT组织的攻击案例分析

您可能之前看到过我写的类似文章,为什么还要重复撰写呢?只是想更好地帮助初学者了解病毒逆向分析和系统安全,更加成体系且不破坏之前的系列。因此,我重新开设了这个专栏,准备系统整理和深入学习系统安全、逆向分析和恶意代码检测,“系统安全”系列文章会更加聚焦,更加系…

四、管道与重定向

四、管道与重定向 1 重定向 0,标准输入(键盘) 1,标准输出 2,标准错误, 3,进程在执行过程中打开的其他文件。 &:表示正确错误混合输出1.1 输出重定向 (覆盖,追加) > ----覆盖 >> ----追加 正确输出: 1> 1>> 等价…

Git 仓库内容操作

Git 仓库内容操作 | CoderMast编程桅杆Git 仓库内容操作 添加文件到暂存区 使用如下指令将工作区的文件添加到暂存区,告诉 Git 在下次 commit 时哪些文件做出了修改。 commit 指令详看后续 添加一个或多个文件到暂存区: 添加指定目录到暂存区 添加当前目…

ffmpeg与sdl的个人笔记

说明 这里的ffmpeg基础知识和sdl基础知识仅提及与示例代码相关的知识点, 进阶可学习雷神的博客。 https://blog.csdn.net/leixiaohua1020 当然,如代码写的有问题或有更好的见解,欢迎指正! 音视频基础知识 在学习音视频理论知识时&#xff…

CSS中设置透明度的2个属性:opacity,RGBA以及它们的区别

你好,我是云桃桃。 一个希望帮助更多朋友快速入门 WEB 前端的程序媛。 云桃桃-大专生,一枚程序媛,感谢关注。回复 “前端基础题”,可免费获得前端基础 100 题汇总,回复 “前端工具”,可获取 Web 开发工具合…

试用了三个Ai音乐工具,我的偶像河图要完蛋了

试了三个生成音乐的ai工具,分别是爆火的suno,后期新秀udio,还有我们国内的天工。 先说感受,suno和天工我觉得稍微靠前,udio可能我的配置风格有问题,啪啪啪连选了好几个风格,生成的东西有点怪。 我随手写了…

【机器学习基础1】什么是机器学习、预测模型解决问题的步骤、机器学习的Python生态圈

文章目录 一. 什么是机器学习1. 概念2. 机器学习算法分类 二. 利用预测模型解决问题的步骤三. 机器学习的Python生态圈 一. 什么是机器学习 1. 概念 机器学习(Machine Learning,ML)是一门多领域的交叉学科,涉及概率论、统计学、…

深度学习 --- stanford cs231学习笔记(一)

stanford cs231学习笔记(一) 1,先是讲到了机器学习中的kNN算法,然后因为kNN分类器的一些弊端,引入了线性分类器。 kNN算法的三大弊端: (1),计算量大,当特征比较多时表示性差 (2),训练时耗时少…

01 - 安装Kettle

下载安装包 我这边提供的安装包是绿色版的,开箱即用 Kettle.exe 阿里云盘分享 提取码: 8sd5 点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。 启动步骤 解压 双击Spo…

注意力机制(四)(多头注意力机制)

​🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀《深度学习基础知识》 相关专栏: ⚽《机器学习基础知识》 🏐《机器学习项目实战》 🥎《深度学习项目实…

Python | Leetcode Python题解之第55题跳跃游戏

题目&#xff1a; 题解&#xff1a; class Solution:def canJump(self, nums: List[int]) -> bool:n, rightmost len(nums), 0for i in range(n):if i < rightmost:rightmost max(rightmost, i nums[i])if rightmost > n - 1:return Truereturn False

闲话 Asp.Net Core 数据校验(三)EF Core 集成 FluentValidation 校验数据例子

前言 一个在实际应用中 EF Core 集成 FluentValidation 进行数据校验的例子。 Step By Step 步骤 创建一个 Asp.Net Core WebApi 项目 引用以下 Nuget 包 FluentValidation.AspNetCore Microsoft.AspNetCore.Identity.EntityFrameworkCore Microsoft.EntityFrameworkCore.Re…